

The L-CSC cluster: An AMD-GPU-based cost- and power-efficient multi-GPU system for Lattice-QCD calculations at GSI

Dr. David Rohr

Frankfurt Institute for Advanced Studies

SC14, New Orleans

Green500 BoF Session, 20.11.2014

The Lattice-CSC Cluster at GSI

Lattice-CSC (at GSI):

- Built for Lattice-QCD simulations.
- Quantum Chromo Dynamics (QCD) is the physical theory describing the strong force.
- Very memory intensive.

GSI:

20.11.2014

Helmholtz-Center for Heavy Ion Research Darmstadt, Germany

Currently building a new particle accelerator for the FAIR project.

- → Large New Datacenter (Green Cube)
 - 700+ Racks, 15 MW PowerPUE: approx. 1.05

Green DataCenter at GSI, Darmstat, Germany

The Lattice-CSC Cluster at GSI

Lattice-CSC (at GSI):

- Built for Lattice-QCD simulations.
- Quantum Chromo Dynamics (QCD) is the physical theory describing the strong force.
- Very memory intensive.

160 Compute nodes:

- 4 * AMD FirePro S9150 GPU
- ASUS ESC4000 G2S Server
- 2 * Intel 10-core Ivy-Bridge CPU
- 256 GB DDR3-1600 1.35V
- FDR Infiniband
- 1.7 PFLOPS Peak

Green DateCenter at GSI, Darmstat, Germany

The Lattice-CSC Cluster at GSI

Lattice-CSC (at GSI):

- Built for Lattice-QCD simulations.
- Quantum Chromo Dynamics (QCD) is the physical theory describing the strong force.
- Very memory intensive.

160 Compute nodes:

- 4 * AMD FirePro S9150 GPU
- ASUS ESC4000 G2S Server
- 2 * Intel 10-core Ivy-Bridge CPU
- 256 GB DDR3-1600 1.35V
- FDR Infiniband
- 1.7 PFLOPS Peak

Installation ongoing, 56 nodes ready

Green DateCenter at GSI, Darmstat, Germany

Custom Open-Source DGEMM & HPL

CALDGEMM Library and HPL-GPU, available as Open-Source under (L)GPL license.

- Optimized for multi-GPU with OpenCL (exchangeable GPU backend vendor independent).
- Dynamic workload balancing among CPUs / GPUs.
- Optimized for power efficiency.

Custom Open-Source DGEMM & HPL

CALDGEMM Library and HPL-GPU, available as Open-Source under (L)GPL license.

- Optimized for multi-GPU with OpenCL (exchangeable GPU backend vendor independent).
- Dynamic workload balancing among CPUs / GPUs.
- Optimized for power efficiency.
- \rightarrow Perfect scaling up to four GPUs.

w.goe

FIAS Frankfurt Institute

Custom Open-Source DGEMM & HPL

CALDGEMM Library and HPL-GPU, available as Open-Source under (L)GPL license.

- Optimized for multi-GPU with OpenCL (exchangeable GPU backend vendor independent).
- Dynamic workload balancing among CPUs / GPUs.
- Optimized for power efficiency.
- Perfect scaling up to four GPUs. \rightarrow

Our approach for HPL:

[GFlop/s]

8000

7000

'sitaet.c

846

ehalem 4-Core 2.4 GHz. 24GB RAM, 2 * AMD 5850 GPU

SANAM: 2 * Sandy-Bridge 8-Core 2.0 GHz, 128GB RAM, 2 * AMD S10000 Dual-GPU Lattice-CSC: 2 * Ivy-Bridge 10-Core 3.0 GHz, 256GB RAM, 4 * AMD S9150 GPU

Pipeline works well, as long as CPU tasks (solid line) finish before GPU tasks (dashed line).

→ Optimal GPU usage 95% of time

Combined CPU / GPU DGEMM:

Better Performance (2-5%)

GPU Only DGEMM:Better Efficiency (3-4%)

FIAS Frankfurt Institute for Advanced Studies

Dynamic Work Balancing & Optimal Configuration

Pipeline works well, as long as CPU tasks (solid line) finish before GPU tasks (dashed line).

→ Optimal 95% of time

Combined CPU / GPU DGEMM:

Better Performance (2-5%)

GPU Only DGEMM:

- Better Efficiency (3-4%)
- We have two software versions:
 A performance optimized version
 - An efficiency optimized version

FIAS Frankfurt Institute

Dynamic Parameter Tuning for Best Performance

At different point in time during Linpack run, different parameters are optimal.

6000 We choose optimal settings one itaration [GFlop/s] dynamically at every point in 5000 time. 4000 3000 Performance 2000 1000 Without DTRSM Offload (5458 GFlop/s) With DTRSM Offload (5386 GFlop/s) 180000 160000 140000 120000 100000 80000 40000 20000 60000 Iteration (Remaining Matrix Size)

Dynamic Parameter Tuning for Best Performance

At different point in time during Linpack run, different parameters are optimal.

- We choose optimal settings dynamically at every point in time.
- Take care: Settings yielding optimal performance and settings yielding optimal efficiency may be different!

Dynamic Parameter Tuning for Optimal Efficiency

Using high-resolution power measurement, we plot the efficiency over time. (Number of Operations per timebin / Energy consumption per timebin)

Optimal CPU Frequency changes over time.

Dynamic Parameter Tuning for Optimal Efficiency

Using high-resolution power measurement, we plot the efficiency over time. (Number of Operations per timebin / Energy consumption per timebin)

- Optimal CPU Frequency changes over time.
- We use dynamic frequency scaling to achieve optimal efficiency at every point in time.

Optimization Summary

Hardware tuning:

- Infiniband Network Root Filesystem No Hard Disks / Ethernet / USB / etc.
- **Optimal Fan Settings Temperature v.s. Fan Power Consumption**

Software optimizations:

- Custom Open-Source DGEMM / HPL Software based on OpenCL.
- Dynamic workload distribution among CPUs / GPUs.
- Dynamic parameter adaption for best performance or best efficiency at every point in time.
- Two settings of parameters optimized for performance or for efficiency.
- Dynamic voltage / frequency scaling for CPU and GPU.
- For best efficiency, we leave some devices unloaded by intent: CPU at beginning, GPU at end.

Results

Power consumption over time

56 Nodes:

www.goethe-uni

ersitaet.d

- 301300 GFLOPS
- 1016 W per Node
- → 5295 MFLOPS/W

Results

Power consumption over time

56 Nodes:

ww.goethe-

sitaet.d

- 301300 GFLOPS
- 1016 W per Node
- → 5295 MFLOPS/W

Infiniband Switches: • 257 W

→ Including the network: 5.27 GFLOPS/W

Results

Perfect scaling to many nodes:

Efficiency:

1 Node: 5378 MFLOPS/W 4 Nodes: 5250 MFLOPS/W 56 Nodes: 5270 MFLOPS/W

Performance (per node): 1 Node: 5791 GFLOPS 4 Nodes: 5380 GFLOPS 56 Nodes: 5380 GFLOPS

Performance optimized version: 6800 GFLOPS (single node)

Time s

Playing with the rules

The Green500 rules state that the power measurement interval must at least cover 20% of the middle 80% of the core phase.

The Green500 rules state that the power measurement interval must at least cover 20% of the middle 80% of the core phase: For instance the period 70%-90%.

The Green500 rules state that the power measurement interval must at least cover 20% of the middle 80% of the core phase: For instance the period 70%-90%.

Suggestions

- All power measurements should cover 100% of the core phase.
 - Do we want to measure 100% of the cluster?
 - Yes! Otherwise one could screen the nodes and measure the best one.
 - No! Measuring 100 kW and above at high accuracy can be very challenging.

